Societal – Occupational Health and Safety

Current challenges for joining and cutting processes

Prof. Dr. Emil Schubert – ABICOR BINZEL

Dr. Sascha Rose – Technische Universität Dresden
ABICOR BINZEL

• Founded in Gießen, Germany in 1945
• 500 employees in Germany, 1,000 employees worldwide
• 34 Subsidiaries and more than 20 exclusive partners
• Production sites in:
 – Germany (2)
 – China
 – India
 – Brazil
 – USA
 – Russia
• Distribution companies in:
 – Europe
 – North and South America
 – Asia
 – Africa
 – Australia
• Turnover in 2014: 140 million EUR
• Total number of welding torches in 2014 (worldwide): 540,000
Importance of welding and cutting in EU27

Welding and cutting equipment and systems
- 2,900 million EUR added value
- 47,800 employees

Welding and cutting processes over all – incl. use and complementary goods
- 66,100 million EUR added value
- 1,220,000 employees out of which 850,000 welders and operators are in direct or close contact to the processes.

DVS Research Association on Welding and Allied Processes: Added value and jobs by joining technology in Germany and Europe. Data base: 2010, DVS 2013

Harmful effects on physical health by joining and cutting processes
- Electrical hazard
- Fumes
- Gases
- Noise
- Machine movement
- Physical load (e.g. torches, esp. in positional welding)
- Radiation

⇒ **Hazards occur in all joining and cutting processes – arc and laser processes as well as adhesive bonding and mechanical joining.**
Harmful effects on physical health by joining and cutting processes

- Electrical hazard
- Fumes
- Gases
- Noise
- Machine movement
- Physical load (e.g. torches, esp. in positional welding)
- Radiation

⇒ Main challenge for most processes are emissions of aerosols and/or gases (respirable and toxic).

<table>
<thead>
<tr>
<th>Country</th>
<th>Exposure limit 2007</th>
<th>Up-to-date exposure limit</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>3 mg/m³</td>
<td>1.25 mg/m³ (2014)</td>
<td>- 58 %</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5 mg/m³</td>
<td>1 mg/m³ (2010)</td>
<td>- 80 %</td>
</tr>
</tbody>
</table>

⇒ Challenge: Causal process emission rates cannot be estimated because they highly depend on specific application and boundary conditions (process parameters, welding equipment, material, extractions systems, ceiling height, ...).
Harmful effects on physical health by joining and cutting processes

- Electrical hazard
- Fumes
- Gases
- Noise
- Machine movement
- Physical load (e.g. torches, esp. in positional welding)
- Radiation

⇒ Main challenge for most processes are emissions of aerosols and/or gases (respirable and toxic).

<table>
<thead>
<tr>
<th>Country</th>
<th>Up-to-date exposure limit</th>
<th>Recommendation</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>5 ppm (currently suspended)</td>
<td>0.5 ppm (evaluation criterion)</td>
<td>- 90 %</td>
</tr>
<tr>
<td>France</td>
<td>3 ppm</td>
<td>0.5 ppm</td>
<td>- 83 %</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3 ppm</td>
<td>0.5 ppm</td>
<td>- 83 %</td>
</tr>
</tbody>
</table>

⇒ Challenge: Regulations will lead to mandatory use of activated carbon filter in almost every joining and cutting application – but effectiveness of extraction is unknown.
Effects on technology users

- Constantly increased demands on occupational health and safety lead to uncertainty of machine investments in Europe especially for manual workplaces.
- Occupational Exposure Limits are lowered without regarding technical feasibility and test reliability.

⇒ Demands for research:
 - Validation and demonstration of new low-emission processes and materials
 - Support in designing efficient extraction systems
 - Practicable measurement and documentation systems for fumes and gases

Effects on technology providers

- Increasing demand for easy-to-handle equipment (e.g. lightweight extraction torches)
- Increasing demand for low-emission processes.
- Complex and expensive measurements of emissions – only random measurements by authorities

⇒ No predictive statements about real-world fume concentrations at work places currently possible

⇒ Demands for research:
 - Effective, close-to-process extraction systems
 - Low-emission processes
 - Practicable measurement systems for fumes and gases
Approaches to fulfill demands in OHS

1. Development of low-emission processes and materials

- Optimized process control can reduce fume emissions by up to 75%.

- Hazardous fume components can be reduced to almost zero.

⇒ Many research results do not reach end users because technologies are not market-ready yet.
⇒ Projects are needed to validate and demonstrate research results of innovative, low-emission processes and materials in relevant environments – esp. in manual use for SME applications.
2. Development of extraction systems

- Fume extraction torches can reach capture efficiencies of up to 90% but depend on process parameter setting welding and welding position.

- Modern process cabins are currently designed specifically for applications, e.g. for laser remote cutting.
- Special equipment is needed for certain applications, e.g. when using nanoparticles.

⇒ Many users, esp. SMEs, are often overstrained by current demands and different approaches of extraction.
⇒ Projects are needed to design effective and efficient extraction systems for aerosols, gases and nanoparticles.
3. Measurement and documentation

- Ultrafine particles / nanoparticles are hard to measure in an industrial environment.
- Very expensive equipment, not ideal for welding and cutting processes due to wide variation of particle size distribution and chemical composition.

- Exposure limits are currently checked in industrial environments in test series of max. 2 h duration with uncertain boundary conditions.

⇒ Today only fractions of air can be analyzed with many uncertainties about boundary conditions.
⇒ Projects for emission measurement and documentation in industrial environments are needed.
Starting point:
1. Exposure limits are constantly lowered all over Europe – e.g. respirable fume and nitrogen oxides.
2. Most joining and cutting process are highly emissive – especially in aerosols and gases.
⇒ High demands for low-emission processes and materials, especially for manual use.

Current problems:
1. Occupational exposure limits are lowered without regarding technical feasibility and test reliability.
2. Innovative technical solutions are not ready – esp. for manual use in SME applications.
3. Most measurement devices are not suitable for joining and cutting processes in industrial environment.
⇒ Uncertainties about sustainability of investments lead to questions on investments in Europe.

Approaches:
1. Development of low-emission processes and materials – validation and demonstration in relevant environment, especially for manual use in SMEs.
2. Development of extraction systems – support for technology users to create design efficiently.
3. Measurement and documentation – provide reliable, secured and repeatable measurements which can be documented.

Goals:
1. Companies have to be enabled to comply with health and safety demands.
2. Exposure limits have to be measurable and verifiable in industrial environments.
3. Low-emission processes and suitable, efficient extractions have to be ready for market to reach the goals in occupational health and safety.
Thank you for your kind attention!

Alexander Binzel Schweisstechnik GmbH & Co. KG
Kiesacker, 35418 Buseck, Germany
www.binzel-abicor.com
info@binzel-abicor.com
BGI 593

Burt & Rose: S&S 4/2015

IGF-Nr. 18.179 B

IGF-Nr. 18.149 BG/2
LZH Hannover, FhG IWS Dresden: RemoStAad - Steigerung von Prozessstabilität und Schweißnahtqualität beim Remote-Laserschweißen durch gezielte Strömungsführung mittels Anlagenadaptation (in German). IGF 18.149 BG/2, 04/2014 – 03/2016

Plitzko, BauA

BMBF ELite (02PJ2090-2095)
Energieeffizienter Leichtbau: Trennen und Fügen von CFK-Bauteile (ELite) (in German). TU München, iwb, BMBF-Förderkennzeichen 02PJ2090-2095

Weiß, BGHM
V.-E. Spiegel-Ciobanu: Bericht aus dem Themenfeld „Schadstoffe in der Schweißtechnik“, Aktueller Stand und Ergebnisse (in German). Presentation Q6 03.11.2015

IGF 433ZN
LZH e. V. , SKZ - KFE gGmbH: „Experimentelle Untersuchung des Einflusses der Prozessbedingungen bei der Lasermaterialbearbeitung von Kunststoffen auf die Freisetzung von partikel- und gasförmigen Emissionen sowie Bewertung des Gefährdungspotenzials (in German). IGF 433ZN, 08/2012 – 10/2014